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Abstract—This paper introduces a new, fast and scalable
decentralized ledger system called Network of Momentum
that achieves high throughput transactions and enables a
new form of distributed applications. The paper begins
with a short history about distributed systems together
with the core components of the existing architectures,
alongside with their challenges - the consensus mechanism,
the underlying transactional data structure, the smart
contracts layer, then it presents the proposed architecture
that is leaderless in its nature and is based on a dual
ledger system called Network of Momentum that uses
virtual voting for consensus. It also provides a brief
introduction into a framework that employs unikernels
to run distributed applications, but because it is beyond
the scope of the paper, a more comprehensive study will
follow as a yellow paper. Subsequently, the paper describes
some classical attack scenarios and how to surpass them,
analyzes the complexity and key protocol parameters
and draws conclusions together with discussing related
potential research directions.

Keywords: decentralization, byzantine fault tolerance,
permissionless consensus, P2P network, protocol design

I. INTRODUCTION

Interest in decentralized systems was reignited by
the rise of Bitcoin [1] born in the midst of the 2008
financial crisis and paved the way to countless research
initiatives and innovative technologies in the space of
computer science and beyond, with focus in areas of
cryptography, distributed systems and game theory. A
new concept, the blockchain, was popularized by emer-
gent cryptocurrencies that exploited the nature of de-
centralization to create complex economic systems that
culminated with the implementation of the first general-
purpose bytecode execution platform, Ethereum [2], and
enabled trusted computation among a group of mutually
distrustful participants and further materialized in a myr-
iad of decentralized applications ranging from creating
self-sovereign identities, peer-to-peer energy markets,
prediction markets, improving supply chain logistics to
complex financial instruments. A wave of innovation
was fueled by their success in the market and shaped

a rich landscape of thousands of cryptocurrencies. Con-
sequently, several consensus algorithms and new ledger
data structures have emerged for decentralized systems,
each of which retains interesting capabilities and unique
properties as we will explore in the following sections.
This paper presents a decentralized ledger system that
features a leaderless, fully-local and scalable consensus
algorithm based on virtual voting coupled with proof of
work and proof of stake anti-sybil [6] mechanisms that
reaches eventual consensus with probability one. The
concept of virtual voting was known long before in the
literature, starting with the pioneering paper ”Byzantine-
Resistant Total Ordering Algorithms” [5] by Moser and
Melliar-Smith where they formulated four algorithms
to establish a total ordering from network events. The
peculiar concept of virtual voting that later reappeared
in other papers such as Hashgraph [8], PARSEC [9] or
Blockmania [51], was the ability to execute a virtual
agreement protocol, as authors Moser and Melliar-Smith
cleverly observed long before and exploited the fact that
votes weren’t explicitly contained in the messages, but
were deducted from the causal relationships between
them. The contributions of this paper are outlined as
follows: the protocol comprises of a dual ledger archi-
tecture, a meta-DAG created by participating consensus
nodes, a projection of the meta-DAG that represents
the transactional ledger, a proof-of-work link between
relayed transactions emitted by clients, together with
the following properties and functions: a vote-weighting
function based on proof of stake for participating con-
sensus nodes, an incentivization scheme based of proof
of work, a difficulty oracle and a super-quorum selector.
The remainder of the paper is organized as follows: in
Section II we will discuss basic notions about the Bitcoin
protocol and smart contracts and in Section III we will
provide some insights about various state-of-the art com-
ponents that comprises a decentralized ledger system.
We build our system on a dual directed acyclic graph
based architecture called Network of Momentum that
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employs a consensus algorithm that uses a virtual voting
technique in association with proof of work (PoW) [3]
and proof of stake (PoS) [4] that we present in Section
V. We then show in Section VI how the network can
withstand different attacks and threat models. In section
VII we analyze the protocol parameters together with
the complexity and outline the cryptoeconomic system.
In Section VIII we conclude with a summary and discuss
future research directions.

II. BACKGROUND

In this section, we present the core concepts of dis-
tributed ledgers. We then explore a simplified specifica-
tion of the Bitcoin protocol and present a short review
about smart contracts.

A. From distributed to decentralized ledgers

A distributed ledger is a consensus of replicated
and synchronized digital data structure shared between
multiple nodes in a peer to peer network. Each node
replicates and saves an identical copy of the ledger,
updating it independently from the rest of the network.
The updating process is based on a consensus algorithm
where nodes vote which copy is correct; once the con-
sensus has been reached, all the other nodes update their
ledger accordingly. An important aspect of a distributed
ledger system is that there is no central authority to
enforce rules and therefore no single point of failure,
so the integrity and security are accomplished by using
a consensus algorithm and cryptographic mechanisms.

A consensus algorithm is at the core of a distributed
ledger system - it ensures that the nodes agree on a
unique order in which entries are appended. An essential
aspect of a consensus algorithm is fault tolerance - the
property that enables a system to continue operating
normally in the presence of one or more faults. Therefore
the consensus algorithm must be resistant to different
types of faults, that can be either unreliable or malicious
nodes attempting to hijack the system.

There are two main categories of failures a node may
be subjected to: crash failures and Byzantine failures.
Crash failures occur when nodes suddenly stop and do
not resume operation. Byzantine failures are arbitrary
faults presenting different symptoms to different ob-
servers - in a decentralized environment they may occur
as a result of malicious activity.

The problem of designing a system that can cope
with byzantine faults was formulated and presented as
the Byzantine Generals Problem [7], hence a consensus
protocol tolerating byzantine failures must be resilient to
any possible error that can appear.

Distributed ledgers can be further categorized, de-
pending on the nature of the environment i.e. public
or private, into permissioned or permissionless: this
determines the participation eligibility of nodes or users
that can join the system.

In a permissionless distributed ledger, such as Bitcoin,
anyone can become a node and participate in the consen-
sus process for determining the ledger state or commit to
the shared state by invoking transactions. A permissioned
distributed ledger e.g. blockchain consortium, in contrast
is operated by a set of entities that can identify and
decide what nodes can join and update the shared state
and even can control the transaction issuance. We will
refer to permissionless distributed ledgers as decentral-
ized ledgers to emphasize this distinction.

B. Bitcoin

The history of cryptocurrencies started in 2009 when
an anonymous figure known by the pseudonym of
”Satoshi Nakamoto” released the first Bitcoin client and
mined the first block of the Bitcoin timechain, thus
successfully managing to solve the decades old problem
of double-spending in a permissionless environment. The
release of the first Bitcoin client marked the inception
of a completely decentralized electronic cash system that
facilitates pseudonymous payments without any trusted
third parties.

The problem of double-spending in a decentralized
network was solved by Satoshi using a ”distributed
timestamp server” that consists of a proof of work
mechanism and an incentivization scheme using an un-
structured peer to peer network with an unknown number
of participants susceptible of sybil identities together
with a method of determining the ”legitimate” ledger
by each participant independently.

The consensus protocol is commonly known, although
informal, as Proof of Work, and is often encountered
in literature as the ”Nakamoto protocol” family, imple-
mented in a wide array of cryptocurrency networks; it
virtually uses the longest chain of most accumulated
proof of work selection rule to probabilistically de-
termine the valid timechain. A de facto formalization
of the Bitcoin protocol isn’t broadly accepted by the
academic community given the difficulty in providing
a good generalized definition - that ultimately depends
on the tight interaction between the various parts that
make up Bitcoin.

A Bitcoin account consists of a public and private
key pair; an address is the hash of the public key and
is used to receive coins, while the private key of the
account is used to authorize the transfer of coins. A
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transaction consists of three data fields - inputs, outputs
and metadata; the metadata holds generic information -
the hash and size of the transaction, the number of inputs
and outputs and a lock time field. The transaction fee
represents the difference between the total value of the
inputs and the total value of the outputs. If the validation
procedure passes, the transaction is broadcasted to the
network; a correct node only broadcasts it once, in case
it receives the same transaction multiple times. Finally,
the transaction is included into the mempool and awaits
confirmations i.e. become embedded into the blockchain.
Every node can participate in the consensus protocol, a
process known as mining, by computing a cryptographic
proof-of-work puzzle; if the node finds a solution, the
newly created block containing transactions from the
mempool is propagated through the peer to peer network
and if valid, it is appended to the blockchain. We will
discuss different Proof-of-X algorithms in Section III.

Although Bitcoin taken as a whole is fulfilling its
purpose for more than a decade under real-world condi-
tions, there have been studies of individual components
of Bitcoin that point out limits or even theoretical design
flaws of the protocol; for example, according to Eyal
and Sirer et al. Bitcoin is incentive incompatible due to
selfish mining [20].

C. Smart contracts

Another interesting topic is the programmable com-
ponent of a cryptocurrency, smart contracts and decen-
tralized applications. The basic idea is that one can run
arbitrary quasi-Turing complete code in a decentralized
setting, from simple smart contracts for automated pay-
ments to more complex applications.

Early blockchain networks such as Bitcoin have a sim-
ple, Turing-incomplete stack-based scripting language
used as a locking mechanism for transaction outputs:
”The script is actually a predicate. It’s just an equation
that evaluates to true or false. Predicate is a long and
unfamiliar word so I called it script.” [36].

The smart contract concept was pioneered by Szabo
in [21]. With the expansion of the Internet it became
clear that cryptographic enforcement of agreements can
become a cornerstone for human cooperation in a digital
world. Ethereum was the first project to successfully
implement the smart contract paradigm. A smart contract
is a piece of code typically written in a higher level
language, for example Solidity, and compiled down to
bytecode interpreted by a specialized virtual machine. In
Ethereum’s case, the resulting bytecode is ran inside the
Ethereum Virtual Machine that is present in every node

of the blockchain network and the execution of instruc-
tions is deterministic and verifiable by all participating
nodes.

A desired property of smart contracts is their im-
mutability: once a smart contract is deployed it cannot
be modified by third parties. This can be a double
edge sword, amplifying both the strength of censorship
resistance and the weakness of poorly written code.
Fortunately, there are techniques to overcome bugs by
upgrading the vulnerable smart contracts code with the
use of proxy contracts or by using a formal verification
framework [22].

Overall, smart contracts dramatically increase the
specter of use-cases for DLTs, from allowing basic
conditional payments to more complex business logic.
We will provide a deeper analysis of this topic and
describe our proposed solution in Section V.

III. STATE OF THE ART

A. Ledger types

Even though the terms distributed ledger and
blockchain are often used inter-changeably in the
literature, there is a subtle distinction between them
which is worth headlining: a blockchain is just subset
of the larger superset of distributed ledgers. One of
the most important aspects when designing a new
architecture is the distributed ledger component that
describes how transactions are embedded.

Definition 1 A decentralized ledger is defined as a
distributed data structure with entries that are digital
records of actions, in a permissionless environment.

1) Blockchain: The most common decentralized
ledger is the blockchain. One definition for the
blockchain is a distributed, decentralized, public ledger
in the form of a cryptographically secured linked list of
blocks holding transactions, without a central authority
or coordinator, managed by multiple entities partici-
pating in a peer to peer network, usually in a trust
minimized context.

The digitally signed transactions are hashed and en-
coded into a cryptographically tamper-evident data struc-
ture known as a Merkle tree, forming a ”block”. Each
block contains a cryptographic hash of the prior block,
creating a linear list of blocks linked by tamper-evident
hash pointers, thus enabling a tamper-resistant way to
confirm the integrity of previous blocks, all the way back
to the genesis block.

Additional integrity measures are used to combat
potentially malicious, byzantine adversaries, such as the
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requirement that a block hash is smaller than a given
target e.g. in Nakamoto protocol family, or a multi-
signature or threshold signature over a block, by the
nodes participating in the blockchain network.

For example, in order for a block to be added to the
Bitcoin ledger, the nodes have to participate in a lottery
where their chances are proportional with the amount
of computational work invested to find a solution for
a cryptographic hash puzzle that allows them to link it
with the previous block.

Once a valid block is appended by the miner, all
the transactions from that block become finalized and
immutable, however due to the independent Poisson
processes in the block proposal race, more than one
miner may propose to extend the blockchain using
different blocks with corresponding valid proof of work
solutions at roughly the same time, leading to a fork; this
results in one of the competing blocks to land on a fork
and subsequently be discarded given the longest chain
selection rule employed by the Nakamoto protocol.

For this reason, in [19], Garay et al. presents a frame-
work to capture the properties of liveness, validity and
agreement of the Nakamoto consensus protocol by three
chain based properties: common-prefix, chain growth
and chain quality. With these in mind, the proof of
work based Nakamoto protocol can be modeled as a
probabilistic Byzantine agreement protocol.

However, what we described earlier - the proof of
work Nakamoto consensus of Bitcoin, is not the only
consensus algorithm for blockchains. There are now
many other consensus algorithms that can power a
blockchain network. We will describe them in the fol-
lowing section.

Even if the blockchain paradigm has many advantages
such as robustness and the fact that is well studied and
more understandable, it ultimately sacrifices scalability
due to the limited number of transactions that fit in any
given block.

2) Directed Acyclic Graph: Nonetheless, in order to
boost scalability and increase transaction processing, the
linear data structure has been expanded into nonlinear
forms such as block graphs and trees [17], [18]. A DAG,
as the name implies, is a finite directed graph with no
directed cycles. For example, IOTA [23] proposed a
custom DAG called Tangle. The Tangle has a genesis
block, then all the transactions are linked to each other
forming a DAG. The Tangle is basically a DAG where
each new transaction is linked to two previous trans-
actions, an architecture that in theory would allow the
structure to be highly scalable. Other cryptocurrencies
that implemented DAG structures are Byteball [25],

which is similar to IOTA, and Avalanche [10], which
has a more complex model. Another interesting DAG
ledger approach is represented by Hashgraph, developed
by the company Swirlds and used as the backbone of
the Hedera cryptocurrency. The hashgraph is a special
type of DAG where each record is a message that can
accommodate several transactions. Furthermore block-
less, nonlinear data structures are also adopted in many
recent architecture designs for their potential to enhance
transaction throughput.

3) Holochain: Another decentralized ledger is the
Holochain [26], a concept implemented in the Holo
cryptocurrency presented as a scalable agent-centric
distributed computing platform. Holochain applies the
”trustless” principle of decentralized ledgers by making
context specific ledgers where trust exists contextually
and locally, being interoperable with other ledgers that
are similarly trustful. It is a combination of multiple
concepts: distributed hash tables, git and bittorent. In
Holochain, each node runs its ”local source chain”, an
append-only log and operate autonomously.

Rather than storing a copy of the full ledger on every
node of the network and enforcing a universal consensus
protocol, Holochain takes an agent-centric approach and
divides the data to many different nodes and establishes
access only to the data that is useful for a particular
node. Nodes validate each other based on jointly relevant
information and on context specific rules.

4) Block-lattice: The last ledger data structure
we analyze is the block-lattice. First used by Nano
cryptocurrency [27], it is designed for throughput
and scalability: every user has its own autonomous
account-chain, that can be updated independently from
the rest. The blocks from different account-chains
acknowledge each other and collectively form a
mesh-like structure. Because the account-chains can
grow concurrently, the throughput can be quickly
scaled up. The blocklattice has many advantages -
scalability, simplicity, and it can be secure provided
it is implemented with an adequate consensus algorithm.

Our architecture is based on a dual ledger approach:
a generic DAG, called the meta-DAG used for the
consensus layer and a block-lattice data structure used
to store the transactional data.

We have separated the ledger architecture in order to
achieve a better complexity and faster processing times
when a user wants to query nodes for transactional
data. An overview presenting the advantages and
disadvantages for different types of ledgers can be seen
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in Table 1.

B. Consensus types
The key component of a distributed system that

enables all participants to agree on a state without a
central authority is the consensus algorithm.

Definition 2 Consensus is the process of committing
entries to the decentralized ledger that complies with
a set of well-defined rules that are enforced by all
honest network participants after an entry containing
transactions is accepted.

Different consensus algorithms have distinctive design
choices that have a considerable impact on the system’s
performance, including its transaction throughput, scal-
ability and fault tolerance.

Therefore consensus algorithms have trade-offs be-
tween the level of security and performance. We will
list security and performance properties that are essential
for a permissionless consensus algorithm designed for a
decentralized ledger system.
• Adversary resistance: Indicates the threshold of

byzantine nodes that can be tolerated by the con-
sensus algorithm.

• Sybil resistance: Specifies if the consensus al-
gorithm implements an anti-sybil mechanism. For
example, the consensus algorithm should have a
mechanism to prevent the generation of sybil iden-
tities in a permissionless environment.

• Accountability & non-repudiation: Indicates if
the consensus protocol implements an identity sys-
tem and cryptographic signatures.

• Denial of Service resistance: Specifies if the
consensus algorithm implements a denial of ser-
vice defense mechanism. For instance, some leader
based consensus algorithms are susceptible to DoS
attacks.

• Censorship resistance: Indicates if the consensus
algorithm is censorship resistant. For example, it
precludes external entities from trying to censor
transactions.

From the perspective of quantifying the performance of
a consensus algorithm, we will highlight the following
performance indicators:
• Throughput: Represents the number of TPS (i.e.

transactions per second) a consensus algorithm can
process.

• Scalability: Represents the ability for a system to
expand without degrading performance. Generally,

the throughput of a system is directly affected by
scalability.

• Fault tolerance threshold: Indicates an upper
bound of faulty nodes that directly impacts the
performance of the consensus algorithm. For exam-
ple, some consensus algorithms have an optimistic
regime that favors performance.

• Latency: Also known as finality in this context,
it represents the time it takes for a transaction to
become settled in the ledger.

We will review some of the most important
consensus protocol families that are at the core of
countless decentralized systems.

1) Proof-of-Work: Proof of work was initially de-
signed as a spam mitigation solution [14] and involves
the asymmetry in terms of resource usage between two
separate entities, the prover and the verifier. The prover
performs a resource-intensive task in order to obtain a
result and presents it to the verifier for validation - the
asymmetry comes from the fact that the validation of the
proof requires only a fraction of the resources invested
into its generation.

The core concept of the Proof of Work consensus
algorithm is the competition of nodes in finding solutions
for a cryptographic hash puzzle that satisfies a difficulty
requirement based on the measurement of the total hash
power in order to maintain a specified rate of puzzle
solutions per time interval; once a solution is found,
nodes create and cryptographically link the block with
the tip of the blockchain and advertize it over the peer
to peer network.

For a cryptographically secure hash function H(·) like
SHA-256 in the case of Bitcoin, and a given difficulty
level D(h), each single query to H(·) is an independent
and identically distributed Bernoulli trial with a success
probability described by the following equation:

Pr(y : H(x‖y) ≤ D(h)) = 2−h

Different implementations of PoW algorithms require
different rates at which solutions are found in a given
time interval: in the case of Bitcoin this rate is one
solution for every 600 seconds, and for Ethereum every
15 seconds. The corresponding time period is directly
correlated with the underlying data structure: for in-
stance, Ethereum implements GHOST [30] to optimally
determine the path that has the most computation work
done upon to accommodate the short block times.

Cryptocurrencies that have a PoW based consensus al-
gorithm employ different classes of PoW, (e.g. compute-
bound PoW, memory-bound PoW, chained PoW or other
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TABLE I: Ledger types

Ledger type Advantages Disadvantages
Blockchain Wide-scale adoption in industry Limited scalability

Robust and well studied
DAG Can scale better than a blockchain Increased attack surface

Block-lattice, Holochain Account independence Decentralization trade-offs
Asynchronous transactional model

HashGraph The consensus is derived locally from the graph Potential delays for reaching consensus
Graph bloat

custom implementations) to obtain some desired proper-
ties like ASIC-resistance, such as to avoid some forms
of miner centralization.

In a decentralized model, PoW consensus assumes
that a majority of hashing power is controlled by honest
parties.

2) Proof-of-Stake: Proof of Stake was proposed as
candidate to solve a number of potential shortcomings
of the proof of work consensus such as energy consump-
tion, miner centralization and certain types of economic
attacks.

One of the first cryptocurrencies to implement PoS
as a consensus algorithm in their blockchain network
was Peercoin [47], released in 2012; the success sparked
a wave of innovation, culminating with the Ouroboros
protocol, a provably secure PoS algorithm [31] that is at
the core of the Cardano cryptocurrency [24].

The core notion of the PoS consensus algorithm is
the block creation process that requires a proof that
the participating node owns a certain number of coins.
Naive implementations of PoS may lead to unexpected
problems that naturally don’t occur in PoW based
cryptocurrencies: the ”nothing at stake” problem [49],
short or long range attacks, coin-age accumulation, pre-
computing attacks, stake-grinding or cartel formation
attacks.

Some of the problems can be avoided by a slashing
mechanism within the protocol during the block creation
process. A node that wants to participate in the consen-
sus algorithm first needs to lock a certain number of
coins; this stake represents a collateral. The node that
seals the stake is called a leader, forger, or minter in
PoS terminology and can lose this collateral through a
technique called slashing, in case it deviates from the
protocol specification.

3) Delegated Proof-of-Stake: A popular variant of
PoS is the delegated proof of stake consensus algorithm
(dPoS), where each user can choose to delegate its coins
to a node that takes part in the consensus algorithm.

The idea is similar to the committees found in classical
consensus models; some cryptocurrencies have a fixed,

static set of delegators, while others utilize a dynamic
size of the set of delegators; as for the dPoS terminology,
in a blockchain network they are called block producers.
For instance EOS [41] and Lisk [44] employ a fixed
number of 21 and 101 delegators respectively, while
Tezos [42] takes a different approach with a technique
that allows anyone to amount delegated coins such that
it meets the threshold to become a baker, in exchange
returning for this service a certain proportion of the block
rewards back to the delegating party.

4) Proof-of-X: Proof-of-X consensus algorithms are
extending the concept beyond work and stake to non-
interactively prove a commitment of computational re-
sources.

A PoX scheme should be resistant to puzzle grinding
(i.e. the puzzle must meet several criteria to satisfy
completeness, soundness, non-invertibility, and fresh-
ness), including aggregation or outsourcing [34] of the
computational resources and manipulation of the leader
election process. This leads to hybridizations such as
Proof of Activity, a combination of PoW and PoS used
in Decred [39] or Proof of Importance, used in NEM
[40] that is based on PoS and an ”importance score”
calculated from the net coin transfers from an account.

For instance, PoX can also be designed to incentivize
distributed storage provision like proof of capacity, proof
of storage [16], proof of retrievability and proofs of space
and time.

In Proof of Elapsed Time, each of the block producers
has to wait a random time to create a block; an equivalent
for it would be a verifiable delay function [45], suitable
for the permissionless regime. PoET and similar variants
use a trusted execution environment to enforce these
random delays. One notable example is Hyperledger
[37], but a major drawback is that it is only suitable
for a permissioned environment given that the process
depends on a non-standard secure hardware enclave
within the processor.

5) Hybrid BFT consensus: Byzantine fault-tolerant
consensus protocols are a vast topic with a long history
of research and development, and became candidates for
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hybridization with current blockchain consensus algo-
rithms: for example, PoW-BFT and PoS-BFT are most
widespread.

Due to the scalability constraints of the BFT pro-
tocol in terms of communication overhead, the above
hybridization is intended to decouple the committee
election from the actual consensus.

The primary functionality of the PoX mechanism is
to simulate the leader election in the traditional BFT
protocols; thus it is utilized for managing a stable
consensus committee for each BFT protocol instance.

An example of PoW-BFT hybrid architecture is Ziliqa
[29] that uses PoW to allow identity establishment and
group assignment and multiple rounds of PBFT over the
consensus committee.

As for the PoS-BFT hybrid architecture, a prominent
example is the Tendermint protocol [15]; the committee
formation of the block validators is made using a PoS
process that involves a bond deposit. Moreover, the size
of the bond stake is proportional to the voting power
and the leader of the committee is designated using a
round-robin strategy.

Another alternative is delegated BFT, where the initial
problem of the byzantine generals is slightly adapted
with representative leaders for the generals. This, how-
ever, centralizes the network in a similar way to dPoS,
even if the delegates can be replaced; a notable example
implementing dBFT is NEO [43].

Algorand [52] also relies on a customized hybrid PoS-
BFT consensus protocol for committing transactions.
The PoS mechanism is used to compute via crypto-
graphic sortition the probability of a node to participate
in a committee proportional to its stake and the total
current stake in the network and a verifiable random
function is used to generate a publicly verifiable BFT-
committee of random nodes.

Generally, hybrid BFT protocols enhance overall net-
work throughput and provide faster finality times in
contrast with Nakamoto inspired protocols.

6) Cellular Automata: New Kind of Network [50]
proposes a new consensus algorithm that is based on
cellular automata and a mathematical framework devel-
oped for the Ising model. The nodes act as cells and
together with a message-passing algorithm based only
on sparse local neighbors and a MVCA algorithm [48]
(i.e. Majority Vote Cellular Automata, an algorithm that
uses majority vote as updating rules for the cells) they
reach consensus.

7) Virtual voting: Virtual voting is a concept intro-
duced by authors Moser and Melliar-Smith in 1999,
where the main idea is to interpret messages as virtual

processes and execute a consensus algorithm to derive a
total ordering of events. An example of a cryptocurrency
network that uses virtual voting to derive consensus
is Hedera. They implement a modified virtual voting
consensus algorithm, called gossip about gossip, where
nodes gossip information not only about transactions but
also about the gossip they receive. In this way the nodes
will arrive at the same conclusion, knowing how votes
would be casted if a voting process would happen, so
they only compute a local ”virtual” vote in order to
achieve consensus.

Other systems that use virtual voting techniques
are [51] and [35], where the communication DAG is
subsequently interpreted to derive consensus. We will
also present a customized implementation of virtual
voting in section VI.

Our architecture will implement a virtual voting
scheme based on a hybridization between proof of stake
and proof of work. A summary of the consensus types
can be seen in Table 2.

IV. PREREQUISITES

A. Definitions

We will use a few definitions needed for a better
understanding of our ledger architecture and the
consensus protocol.

Definition 3. A node is a software program running
on a device that participates in the NoM network
and complies to the protocol specification. It can
directly participate in the consensus algorithm, manage
accounts, observe traffic and relay transactions.

There are three kinds of nodes in NoM, depending on
their contributions towards the health of the network, as
follows:
• Trusting nodes called Sentry nodes. A basic type of

node, lightweight in the sense that they only store
the transaction ledger or a pruned version of it. A
light node only monitors traffic for specific accounts
allowing minimal network usage and resources.

• Trustless nodes called Sentinel nodes. A trustless
node is similar to a Pillar node, but only acts as
an observer, it doesn’t participate in the consensus
algorithm. It carries out the creation of PoW links
for transactions and requires moderate resources to
operate.

• Consensus nodes called Pillar nodes. They
participate in the consensus protocol and have
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TABLE II: Consensus types

Consensus type Advantages Disadvantages
PoW Enables large scale decentralization Doesn’t scale well with a traditional approach
PoS Power efficient in comparison with PoW More attack vectors non-existent in PoW

DPoS More scalable than PoS More susceptible to centralization
PoET Power efficient, suitable for permissioned Susceptible to third party interferences e.g. in the case

environments of hardware enclaves
BFT consensus Well studied and understood Need to be coupled with other mechanisms for

Based on quorums permissionless networks
High complexity

Cellular Automata Good scalability Complex
Requires specific network topology

Virtual Voting Efficiency of the voting process Delays can happen until a transaction is accepted

information about the transactions made in the
network by users. A Pillar requires additional
resources as it relays network traffic from other
Pillars and processes it.

Definition 4. Pillar nodes representing more than a
fraction of the locked stake in any given epoch ε are
called supermajority, as follows:

ζ =
N ∗ 2

3
+ 1

Definition 5. Representative – A sentinel node that
knows about user transactions.

Definition 6. Transaction – A transaction can
be of two types: ordinary send transactions with
a corresponding receive transaction or special
transactions for different circumstances: to mark the
entrance in a new round of consensus, the finishing
PoW for a round or smart transactions regarding zApps.
An ordinary transaction contains the address of the
sender and its balance, the address of the receiver, and
metadata containing hashes for PoW solutions.

Definition 6. zApp – A distributed application that is
based on an unikernel controlled by a smart contract.

Definition 7. Epoch - The transactions are grouped
in consensus rounds called epochs. In every epoch, each
of the nodes that participate in the consensus algorithm
must compute a PoW with adjustable difficulty. The
finish of a PoW is marked by a special transaction,
which is then sent through the network via broadcast.
After receiving the finishing PoW transaction from ζ,
the node enters in the next epoch and marks this with a
particular transaction.

Definition 8. Virtual voting - the concept that
voting is not done with explicit messages. Instead, a
node computes the state of the ledger based on the
information received throughout many epochs from the
network. We will show that after some epochs, if a node
can reach to a conclusion regarding a transaction, all
the honest nodes will reach the same conclusion.

Definition 9. Broadcast – the process of sending
the finishing PoW and the transactions for undecided
epochs to all Pillar nodes.

B. Network Model
We consider the execution of the protocol in an

open, dynamic, distributed system enabled by a message
oriented transport protocol for data packets exchange,
where nodes can join or leave freely. Nodes represent
the core infrastructure of the network and clients are
external in the sense that they are issuing transactions
for nodes to agree upon. We assume an asymmetric
cryptographic signature scheme that enables participants
to authenticate messages. A node is considered honest
if it follows the protocol as described or byzantine if
it deviates arbitrarily from the protocol specification. In
addition, the system is considered asynchronous i.e. there
are no bounds on messages delivery.

C. Goals and assumptions
NoM allows Pillar nodes to agree on an ordered log

of transactions and attains three goals with respect to the
log:
• Liveness goal – Even if there is a number of active

byzantine nodes and under additional assumptions
about network conditions, the system will eventu-
ally make progress i.e. continue appending transac-
tions to the log.

• Safety goal – With high probability all the honest
nodes will reach to the same conclusion regarding
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the order of the transactions; specifically, if an
honest node accepts transaction T (i.e. it is included
in the log), then any future transactions accepted by
other honest nodes will appear in a log that already
contains T.

• Finality goal – Once a transaction is included into
the log and confirmed by honest nodes, it will
remain confirmed in the log, despite any actions
from byzantine nodes.

• Scalability goal – The network will keep optimal
confirmation times for non-conflicting transactions,
even if the number of nodes is constantly increas-
ing.

Starting with these assumptions, the byzantine agree-
ment consensus algorithm has to simultaneously meet
the following three properties:

• Validity: If all correct processes propose the same
value ϑ, then any correct process that decides,
decides ϑ.

• Agreement: No two correct processes decide dif-
ferently.

• Termination: Every correct process eventually de-
cides.

The first two properties are safety properties, i.e.,
properties that state that ”bad things” cannot happen and
the last one is a liveness property, i.e. a property that
states that ”good things” must happen.

D. Important attributes

When designing a distributed system, there are some
attributes any distributed system exhibits and we want
to obtain a good balance between them:

• Consistency: when a node requests the state of the
system – in our case the distributed ledger, the
consistency means that we will obtain the most
recent state of the system.

• Availability: For a request for the state of the ledger,
there must be an answer, even if the answer does
not reflect the latest state of the ledger.

• Partition tolerance: The system continues to be
functional even if there are message failures in the
system.

The CAP theorem [46] states that it is impossible to
achieve all three properties simultaneously. However, we
design the network to have partition tolerance, availabil-
ity and eventual consistency – after a number of retries,
a node will eventually find the state of the network at the
time of the request. The eventual consistency is preferred
over availability in many other distributed systems.

E. Theorems

• T1. Availability. If a user will emit a transaction
to an honest node, in the absence of attacks (e.g.
denial of service), all honest nodes will receive
that transaction.

• T2. Validity. A double spend is not possible
assuming a supermajority of honest nodes.

• T3. Safety. If there is a supermajority of honest
nodes, once a node reaches to a conclusion
regarding a transaction, all the honest nodes will
reach the same conclusion.

• T4. Liveness. If the number of byzantine nodes
is bounded i.e. f < 1

3 , the system will come
to an agreement about the total ordering of the
transactions.

• T5. Scalability. Transaction times processing will
grow linearly with the number of pillar nodes.

• T6. Finality. If a transaction is confirmed (i.e. is
part of the ledger), it will remain forever in the
ledger.

Proofs for the theorems are available in Appendix A.

V. NOM LEDGER AND CONSENSUS

A. NoM Ledger

Our proposed NoM ledger architecture consists of two
separate ledgers – the actual ledger consisting of settled
transactions structured as a block-lattice where there are
stored independent individual user account chains, and a
DAG called the meta-DAG that contains the transactions
required by the virtual voting algorithm.

The block-lattice consists of actual transactions ap-
pearing in the network that are settled - send, receive
and zApp related transactions.

Every user has an account chain that is independently
updated from other account chains as the virtual voting
progresses.

The flow of issuing a transaction is as follows: a user
will have assigned some representative nodes, sentinel
nodes that will process their transactions and that can be
queried in order to pull new information regarding the
account chain or the state of the ledger.

However, in order to prevent denial of service attacks,
the queries can require a fee that needs to be applied in
order to return a valid response: for example, a user can
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use the sentinel nodes for querying the state of the ledger
or sentry nodes to get updates regarding its account
chain.

As we highlighted earlier in the Definitions subsec-
tion, not all network participants are also consensus
nodes; only full nodes (i.e. pillar and sentinel nodes)
keep both the transactional ledger and consensus ledger
used for the virtual voting process. The consensus ledger
is organized in virtual epochs, and the consensus is
achieved per epoch.

B. PoW Links

In this subsection, we will introduce a novel anti-
sybil and anti-spam mechanism called proof of work
links that will enhance connectivity within the network
and limit certain attacks by sharing their commitment
and contributing resources for routing and efficient data
delivery.

There are two goals this mechanism aims to achieve:
the first one is to strengthen the ledger by adding weight
into it (i.e. recording the resulting work of the PoW link)
and the second is to further incentivize the sentinel nodes
to safeguard the network against different attacks such
as spam or distributed denial of service.

A PoW link needs to satisfy the following conditions:
• Only Sentinel nodes can participate in the creation

of a proof of work link.
• Only the private key owner of a Sentinel node can

produce valid signatures to be used the composition
process a proof of work link.

• The signature attached to any transaction should be
unique (i.e. only one signature will be considered
for any key pair).

• A minimum overall weight for the proof of work
link is required in order to be considered valid; a
difficulty parameter is computed in order to obtain
a min target weight for the transaction.

Users constantly issue transactions that are dissemi-
nated to a number of sentinels equal with log σn, where
σn is the total number of the sentinels that a user is
aware of.

Sentinel nodes prove the receipt of the transaction by
adding a small PoW computation and other additional
data (e.g. digital signature, metadata), then they will
relay that transaction to another sentinel node in a ran-
dom manner. Basically, for each transaction, the sentinels
will attach a small PoW computation to it, then they
will randomly relay the transaction to other sentinels,
which will continue to add PoW and further relay that
transaction, constructing a PoW link; a minimum number

of three hops is required by a min relay dimension con-
stant, and an upper bound will be dynamically imposed
by a difficulty parameter. The proof of work will be
calculated with respect to the transaction fee paid by the
user to issue the transaction. The sentinels will continue
to forward the transactions to other sentinels until the
proof of work meets a specific weight threshold; when
the PoW link is complete, the transaction will be sent
to a pseudorandomly chosen consensus node (i.e. pillar
node). Finally, the PoW link will serve an additional
objective in the consensus algorithm, representing an
eliminatory criteria to select between two conflicting
transactions in case of a double spend. An overview
about the dissemination and composition of a PoW link
can be seen in Algorithm 1.

Algorithm 1 PoW Link Algorithm

1: procedure POW LINK
2: while True do
3: t← ReceiveTransaction();
4: if t.Sender() in Users then
5: t.weight += ComputePoW (t, t.fee);
6: t.links++;
7: s← ChooseRandom(Sentinels);
8: SendToSentinel(t,s);
9: else

10: t.weight += ComputePoW (t, t.fee);
11: t.links++;
12: if t.weight ≥ min target weight then
13: p← ChooseRandom(Pillars);
14: SendToPillar(t,p);
15: else
16: s← ChooseRandom(Sentinels);
17: SendToSentinel(t,s);
18: end if
19: end if
20: end while
21: end procedure

A visual representation of this algorithm can also be
seen in Figure 1.

C. The consensus explained

In this paragraph, we will describe how the consensus
is achieved in NoM.

Clients can connect to specific nodes called represen-
tatives and submit transactions for processing. For this
consensus algorithm description we will also suppose
that there are no malicious actors and there are no
ongoing attacks (e.g. denial of service, eclipse attacks,
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Fig. 1: PoW Link messages

etc.); we reserve for treating those particular cases in the
following section.

In order to make a transaction, a user needs to inform
the representatives, in this case sentinel nodes. If the user
is running a sentinel node, it will further disseminate the
transaction to other sentinels in order to prevent eclipse
attacks; the PoW link generation starts and develops as
described by the algorithm from the previous paragraph.

Let’s shift the focus to what happens with the transac-
tions when they reach a pillar node. As time progresses
pillars are incorporating transactions into the consensus
ledger and initially mark them as not decided. The
reason is that a user can make a double spend and
disseminate it to two different representatives. After a
number of epochs, all the pillar nodes will detect with
high probability the double spend transaction and they
will vote only one to remain in the ledger. After some
time, we will presumably have many transactions – send
and receive pairs, that are individually held by consensus
nodes.

We will further detail how the normal operation of the
consensus algorithm takes place, assuming only honest
participants.

First stage
At the start of the algorithm, let’s suppose that all
transactions are marked as being in epoch ε0. So when
a user issues a transaction, the pillar node will keep the
transaction received from a sentinel node if valid, and
marks it as belonging to epoch ε0. At the same time, all
the pillars will compute a proof of work with adjustable
difficulty, in order to keep the epoch duration within
some time bounds, for example 1 minute. After a pillar
node finishes its proof of work, it will broadcast a special
transaction to all other pillar nodes from the network, to
announce them that it has finished the PoW for epoch ε0.
The special transaction includes additional information
like the number of the current epoch and represents the
fact that the pillar node is ready to enter into the next

epoch; we will call this the ”finishing PoW” transaction.
After receiving the finishing PoW from ζ pillar nodes,
it will proceed to the next epoch, ε1.

Note that the pillar could receive a finishing PoW
transaction before it finished computing its own PoW
transaction and other transactions. If it hasn’t completed
the PoW yet, it will abandon it and broadcast a message
with its transactions, then marks itself as being in epoch
ε1.

Second stage
The process continues with other transactions from users,
but marked now as belonging to epoch ε1. Again, the
node will start working for the proof of work in order
to enter in epoch ε2; again, it will enter after receiving
”finishing PoW” transactions from ζ and so on.

Notice that if a node already received messages from
a supermajority of pillar nodes informing it that they
finished the PoW for the current epoch, it will abort the
proof of work generation and enter automatically into
the next epoch. The reason for aborting the proof of
work is that there will be no reward for it, because at
a later epoch the nodes will compute which were the
fastest nodes for that particular epoch and issue rewards
accordingly.

Now, let’s consider two random, independent pillars
from the network in a certain moment during the
consensus algorithm: between the finishing PoW
transaction and entering into the next epoch. When
a node sends a broadcast, it also includes all the
transactions it knows about from other nodes, so in
perfect network conditions after a broadcast all the
nodes will know about the transactions between the
start of epoch and the finishing PoW directly from it.
However, they will not know about the transactions
between the finishing PoW and the next epoch. After the
finishing PoW transaction from epoch ε1, the node will
broadcast all its transactions, including those between
the finishing PoW from epoch ε0 and the start of epoch
ε1.

Third stage
At the beginning of epoch ε2, every node will know
about all the transactions from epoch ε0 – they will
receive information about the transactions between the
start of epoch and the finishing PoW transaction from ζ.

This will happen because, in the meantime, all the
pillars found out about those transactions at the end of
epoch ε2 and they also send a broadcast at epoch ε2, but
they will have only one copy regarding the messages
from the finishing PoW and the start of epoch ε1 –

11



DRAFT

only the transaction made by the pillar itself. However,
at epoch ε2, all the nodes will make another broadcast.
Let’s suppose that all pillars will have a copy of those
messages between the finishing PoW in epoch ε0 and
the start of epoch ε2.

Fourth stage
At the start of epoch ε3, pillars will have messages from
ζ regarding all the transactions between epoch ε0 and
epoch ε1 – the transactions between the start of epoch
ε0 and the finishing PoW transaction will be discovered
at the start of epoch ε2, and the remaining transactions
will be found at the start of epoch ε3, so any pillar will
apply the same ordering to them.

Later stages
However, special cases can appear where not all mes-
sages will arrive to all pillars, so even if the pillar will
receive messages from ζ, not all the pillars will have all
the transactions.

Let’s assume that only a simple majority will have
them. In that situation, the pillar will have to wait for
the next epochs until all the transactions between epoch
ε0 and epoch ε1 will be confirmed by a supermajority
of nodes. For theoretical reasons, if a conclusion can’t
be reached after a certain number of epochs, a coin
round will be needed - every honest pillar will randomly
vote on transactions, in order to prevent an attacker
controlling the internet traffic from deducing the votes.
The node will further broadcast its vote in the next
epoch.

Now, regarding the previous theorems, if a node will
know the transactions between epoch ε0 and epoch ε1
and it will apply a deterministic ordering algorithm and
in case of double spends, a deterministic tie-breaker
algorithm, thus all the remaining honest nodes will arrive
at the same decision. After the node will have a super-
majority of messages with all the transactions between
epoch ε0 and ε1 (as per definition 4, the supermajority is
weighted with a proof of stake mechanism), it will start
to virtually vote on the ordering.

The vote is not actually a real one in the sense that
it doesn’t involve sending additional network messages,
but a set of rules that define a deterministic way to
order the transactions, such as: the PoW link weight,
the timestamp when they arrived at the pillar and, as
tiebreakers, the hash of the transaction. After a node
will order the transactions, it will know that the order
is the same for all the nodes so it will mark them in
the ledger and for every transaction it will put an id
to know the number of the transaction. So, in optimal

network conditions, a pillar will show the new ledger
to a sentinel after three epochs – if a user have made a
transaction at epoch ε0, it will find about it at epoch ε3.

In the next section we will discuss some attack scenar-
ios and also the complexity of the consensus algorithm.

Fig. 2: Consensus algorithm visualization

The consensus mechanism can be better visualized
in Figure 2. There are four pillars, A, B, C and D.
Each pillar computes a proof of work during an epoch,
receiving transactions supplied by sentinel nodes. At the
beginning of epoch ε1, A doesn’t know the transactions
that happen between the finishing PoW transaction for B
and the starting of epoch ε1 for B. At the start of epoch
ε2, A has received those transactions, but only from B.
At the beginning of epoch ε3, A has received messages
from all the pillars regarding the transactions at epoch
ε0, including those between the finishing PoW and the
start of the epoch.

The consensus is summarized in Algorithm 2.

D. Pillars PoW pools

In order for the pillars to be competitive in the process
of producing the proof of work, they will have the
possibility to outsource it using the mining pool concept.
This will create a market efficient ecosystem that will
further strengthen the network and clients committing
resources for Pillar pools will be rewarded proportionally
to their contribution of processing power. We are also
investigating the use of a custom difficulty adjustment
mechanism that will balance between ASIC-friendly and
ASIC-resistant hashing algorithms in order to improve
network security and obtain a higher degree of decen-
tralization. We will defer a detailed specification for a
later date.

E. Unikernels and distributed applications

The following subsection is describing the core com-
ponent of our future distributed apps system, called
zApps, which will be integrated into the NoM archi-
tecture. We are introducing a novel design based on
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Algorithm 2 Consensus Algorithm

1: procedure CONSENSUS ALGORITHM
2: Thread WaitForTransactions = new WaitThread();
3: ComputePoW = new ComputeThread();
4: WaitForTransactions.run();
5: Epoch← 0;
6: min consensus delay ← 3;
7: min coin round delay ← 5;
8: LastConsensusEpoch← 0;
9: while True do

10: count← 0;
11: zeta← 2/3 ∗Nodes+ 1;
12: while count < zeta do
13: count+ = AcceptedBroadcast();
14: if Epoch < CurrentEpoch() then
15: Epoch← CurrentEpoch();
16: end if
17: if ComputePow.finish() then
18: BroadcastPoWandTxs();
19: end if
20: end while
21: if !ComputePoW.ended() then
22: ComputePoW.abort();
23: BroadcastTxs();
24: end if
25: Epoch← Epoch+ 1
26: if Epoch ≥ min consensus delay then
27: for t in UnresolvedTransactions do
28: if t.Epoch() ≤ Epoch−min consensus delay then
29: if countV otes(t) > zeta then
30: TxEpochs[Epoch].add(t);
31: counter[Epoch]++;
32: end if
33: end if
34: if t.Epoch() ≤ Epoch−min consensus delay −min coin round delay then
35: if t.HasConflict() then
36: tc← t.GetConflict();
37: coin← random(0, 1);
38: if coin = 0 then
39: remove(t);
40: else
41: remove(tc);
42: end if
43: end if
44: end if
45: end for
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Algorithm 2 Consensus algorithm (continued)

46: for i← Epoch−min consensus delay; i >= LastConsensusEpoch; i −= 1 do
47: HaveToOrder = [];
48: if counter[i] = TotalTransactions[i] then
49: LastConsensusEpoch = min(LastConsensusEpoch, i);
50: for t in TxEpochs[Epoch] do
51: HaveToOrder.add(t);
52: UnresolvedTransactions.remove(t);
53: end for
54: end if
55: end for
56: if HaveToOrder.size() > 0 then
57: sort(HaveToOrder);
58: for t in HaveToOrder do Ledger.add(t);
59: end for
60: end if
61: end if
62: end while
63: end procedure

unikernels [54] to expand the limits of smart contracts
and enable complex computational tasks. An ideal ver-
sion of a zApps platform should exhibit the following
characteristics:

• Security: The environment for the applications
should be sandboxed with granular permission poli-
cies.

• Immutability: The zApps should be immutable in
the sense that they cannot be modified or tampered
with. Running zApps on untrusted hardware should
be trustless and deterministic and one should expect
consistent results.

• Privacy: To provide means that protect the privacy
of participants, both internal between them and
external from third parties, based on secure multi-
party computation protocols.

With the rise of the unikernel (i.e. minimal stand alone
virtual machine), these properties can be achieved using
a smart contract layer to create a hybrid system suitable
for complex workloads. The most important advantages
in using an unikernel based approach are in terms of
security - they are completely isolated from the host
and performance - they are lightweight and run at native
speeds.

Regarding security, unikernels are systems designed
with a single process and a limited number of system
calls, further reducing the attack surface in terms of re-
mote code execution, shellcode attacks, etc. They further
limit potential attacks by lacking a user based system: the

configuration and management are carried out by smart
contracts that handle certain aspects of the applications’
life cycle such as compilation or deployment. By us-
ing this approach, errors like accidental configuration
alterations can be prevented and the exploitation can
exclusively be carried only on the end application. Per-
formance is another issue for many systems; unikernels
have several benefits such as fast booting times (e.g.
can boot several orders of magnitude faster than normal
virtual machines), avoiding context switching and using
minimum system resources.

The infrastructure to run zApps will consist of special
nodes that will have specific requirements (e.g. minimum
resources in terms of connectivity, hardware specifi-
cations, collateral, etc.). The idea is similar to a de-
centralized infrastructure-as-a-service model where users
can have access to an instant computing infrastructure,
managed and provisioned within the NoM network.

The unikernel design ensures both internal and ex-
ternal protection for the underlying infrastructure that
performs the execution. Furthermore, we are analyzing
several economical models to implement in order to
ensure that an application will reach the end of an
execution without issues, including providing a way for
the user to hire several other nodes to verify certain
checkpoints for example.

Periodically, the users will need to pay for the zApps
usage; this system will be designed in a similar way gas
[53] is implemented for smart contracts as a fees mech-
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anism that prevents abuse and circumvent the Turing
completeness property (e.g. infinite loops). This process
will be automatized through a series of smart contracts
that will be used to manage the zApps operation and
the transfer of gas. The user will have the possibility to
cancel at any time the execution of the app, by either
explicitly sending an abort command or by not paying
the corresponding gas to the node.

In Figure 3 we describe how unikernels can be
integrated into the system.

Fig. 3: Unikernels and zApps

VI. POSSIBLE ATTACKS

Since every distributed network is designed to with-
stand byzantine activity, it is necessary to highlight the
most important related attack vectors for a decentralized
ledger system.

[55] gives us a detailed list of attacks targeted at the
Bitcoin network. We will analyze the most important
problems and how the network confronts them.

An in-depth analysis of these attack vectors and mit-
igation solutions are presented in the following subsec-
tions.

A. Double-spending

One of the first classes of attacks and one of the
most important problem when designing a decentralized
ledger system is the double-spending problem. Bitcoin
emerged as the most influential cryptocurrency network
because it was the first to solve the double-spending
problem in a decentralized environment. The integrity
property of the consensus algorithm states that for any
honest node, accepted transactions are consistent among
honest nodes (i.e. double-spending cannot occur).

Any user can initiate a double spend if it distributes
two transactions with the same parent to different pillars;
however, after a number of epochs all of the pillars
will know about both transactions and all honest pillars

will decide on the same transaction to be retained in
the ledger as confirmed, using the predefined rules we
presented earlier and discarding the double spend.

If a pillar node gets corrupted and is acting mali-
ciously, it can accept a double-spending transaction and
send contradictory information to other pillars. This at-
tack scenario is improbable but entirely possible; pillars
unlike miners have no economic incentive to attack the
network; nevertheless, it is an irrational attack because
attempting to violate the ledger would be destructive to
the network as a whole, which in turn would undermine
the validity of their investment. Byzantine pillars are
accounted for and as long as there is only a malicious
minority, after a number of epochs all honest pillars will
eventually detect the double spend and discard it. We are
also considering a penalizing algorithm to punish such
behavior for corrupted pillars.

B. Forking

A forking attack can happen at any stage, including
from the start of the ledger - the attack is also known as
ledger cloning and all pure proof of stake solutions are
vulnerable to it.

However, NoM is not affected because we employ two
proof of work mechanisms: virtuous transactions need
a PoW threshold satisfied obtained from the PoW link
algorithm to get into the ledger, together with the proof
of work mechanism used by the pillars.

For each pillar, a proof of work translated into com-
putational power is required to complete each epoch and
an attacker needs to outrun all honest pillars in order to
obtain a heavier ledger in terms of accumulated PoW.
Also, we take into account that a user cannot be tricked
to land on a forked ledger. A malicious adversary can
only try to convince new nodes that his fork it the real
ledger, but there are certain ways to deter this: a node
will connect to several pillars to get the ledger. Upon
successful synchronization it will observe which is the
heaviest one before legitimizing it. Therefore forking the
ledger at any time is an irrational attack.

C. DNS Attacks

A DNS attack may occur when a new user wants to
join the network and connects to a list of peers obtained
from a DNS query; this is a common network discovery
mechanism used by many major blockchain networks. If
the attacker manages to inject his IP addresses instead
of the original ones, the new user can be compromised.

This attack can be part of a chain of attacks; there
is research regarding DNS attacks and there are some
solutions to this kind of attack [56] [57]. This attack
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can’t be totally neglected and is still a valid attack for
any type of distributed network, but there are many
viable solutions that are already implemented in real-
world systems.

D. Eclipse attacks

An eclipse attack means that an attacker manages to
isolate a user from the rest of the network. Even if
an eclipse attack is not possible for a pillar, because
it has access to all the other ones and it is very unlikely
to replace pillar identities with fake ones, an eclipse
attack can occur for a single user which connects to a
percentage of the pillars, as discussed earlier.

After an eclipse attack, the user will only see what the
attacker wants, and this can have bad consequences, like
a double spend. However, this attack is common to other
decentralized systems and there are some strategies, for
example random connection at the nodes in the begin-
ning, making very unlikely for an attacker to accomplish
this attack.

E. Sybil attacks

Sybil attacks are among the most destructive for a
decentralized network because if an entity is able to
create a large number nodes on a machine in order to
gain control over the network. However, because the
voting is weighted based on the pillar’s stake, adding
more nodes will not gain the attacker extra power in the
consensus algorithm. Therefore there are no advantages
to be attained with a sybil attack.

F. DoS attacks

The denial of service attack can occur if a malicious
user sends a lot of transactions to the sentinels. We
made this attack harder by adding a transaction fee,
which means that the attacker will make the sentinels
unavailable at the cost of investing resources in the
system, which is a positive aspect for the network and
a negative one for the attacker, taking into account that
the consensus is unaffected.

G. Consensus delay

A consensus delay can happen if the attacker can
interfere with network traffic among pillar nodes. This
attack is unlikely to cause damage if there is a sufficient
number of active pillars in the network; an attacker could
interfere with messages between a certain number of
nodes – for example, by initiating a DDoS attack. In
this case, the consensus may be delayed resulting in un-
confirmed transactions; still, the probability of reaching a
supermajority is one as the number of epochs increases.

The worst case scenario is an attacker taking down
some pillar nodes, but it will have a limited impact on
the network that will continue to confirm transactions
with lag. There are some mechanisms to prevent this
like a detection of the consensus delay mechanism and
a special coin round.

H. Majority attack

This is one of the most destructive attacks that can
occur in a decentralized network, however, it is highly
improbable due to the incentive mechanisms of the
system.

If an attacker can somehow obtain pillars that have
a cumulated stake of 51%, it can add or alter new
transactions. It can’t modify transactions that happened
in the past, but nonetheless, the network is compromised
in this case. In order to avoid this attack, the honest
majority assumption should hold at all times:

Honest nodes > Malicious nodes

Even with a stake of ζ2 +1 the attacker can overpower the
network - because there will be no honest supermajority.

This is worth mentioning as a hard limit for the net-
work. So, in order to function properly, a vital condition
for the network is:

Honest nodes >= 2 ∗ Malicious nodes + 1

VII. PARAMETERS AND COMPLEXITY

A. Complexity analysis

We will now discuss the complexity of the algorithms.
We can express the complexity regarding the number of
messages and time. As we have seen earlier, during an
epoch, users make transactions, that are first distributed
at a small number of sentinels and that are further
forwarded to other sentinels – we can consider this
O(log(S)) in terms of messages, where S is the number
of the sentinels.

The most consuming time happens in the consensus
algorithm, where all the pillar nodes send broadcasts
to all other pillar nodes, so during an epoch the total
number of messages is O(N2). However, if we assume
good network conditions and if we consider the calcu-
lations per pillar, during an epoch, we will obtain that a
pillar has to send a message to every other pillar node
and receive a message from every other pillar node. In
conclusion, we will obtain O(N) number of messages
per pillar, and O(N) time complexity. Due to the fact
that we assumed good network conditions, the total time
spent for a broadcast is small enough in order for the
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network to support thousands of messages per second
during the consensus epochs.

Because the network has a representative system, if
there are N users which send M messages per epoch each
and we have K number of pillars and we suppose a user
sends a transaction to log(K) pillars (log(K) sentinels
which further send to a pillar), that means we will have
τ messages, where

τ = log(K) ∗M

A pillar will support θ messages during an epoch, so
for every log(K) messages a pillar will receive only one,
with

θ =
M ∗ log(K)

K
During optimal network conditions, with speeds of

100 Mb/s, and for a packet of 100 kb, a pillar can
support 1000 messages per second. For a number of
1024 pillars, however, each 10 pillars will have the same
messages, but there will be 102 groups of 10 pillars with
different messages, so the total number of messages per
second in the network can top at 100000 TPS. However,
this is from a purely theoretical perspective, but it gives
as an upper bound for the calculations. The real speed
will decrease due to the cost of the broadcasts. A pillar
receives θ messages during an epoch and sends only
K messages, but those messages will be bigger and will
take a larger amount of time to be propagated throughout
the network.

In the future, we plan to make some experiments
to quantify the supported number of transactions per
second. Another research direction that we will tackle
is to see how the traditional broadcast will compare to
more scalable alternatives. In general, there is a trade-
off between latency and the number of messages. If the
bandwidth is good enough and the number of pillars
is reasonable, the traditional broadcast method has the
advantage of having O(1) latency.

A scalable type of broadcast can be made, for ex-
ample, by sending the broadcast in rounds - the user
will send a transaction to log(K) pillars, then they will
further transmit the information, each of them to other
log(K) pillars and so on.

The number of the messages will be much lower,
O(log K), but there will be some latency involved - for
example, in [58] they have a latency of O logK

log(logK) .

B. Finding a representative
The problem of finding a representative is important

because there can be some attacks, like the eclipse

attack, if a user connects to malicious nodes. This is
the reason why each user has to send his transactions
to log(S) , where S is the number of the sentinels.
Because sentinel nodes are interested in maintaining a
healthy network by computing PoW links and consuming
fees, we can assume that most of them will be honest.
Coupled with a random selection algorithm for choosing
the sentinels, even for 40 sentinels, if 12 are corrupt
sentinels (33%), the probability of choosing all sentinels
being malicious is under 0.1%. The same logic can be
applied for pillars. Another problem is how to choose the
initial bootstrapping nodes. The user will connect to a
number of nodes and will choose randomly among them,
and they will send a list of sentinels from the network
to it. This way, the chance for an attack is very small.

C. Cryptoeconomic system

In order for the network to function properly, a
cryptoeconomic layer will be put in place for all the
network participants. The sentinel nodes will benefit
from the fees by consuming them in order to compute the
PoW links. Also, the sentinels can enable a separate fee
system for user queries that retrieve information about
the state of the ledger. The pillars will be incentivized
for computing the proof of work for the current epoch.
If a pillar receives a supermajority of messages from the
next epoch before finishing its PoW, it will no longer
be rewarded. This is designed to ensure a network wide
competitiveness: the pillars can outsource the proof of
work, acting as mining pools to amass resources and
rewarding accordingly the clients that supply them with
computational power. The last type of incentivization is
for the zApp platform, where a gas like system will be
implemented in order to reward nodes that support this
feature.

D. Managing epochs

In order for the transactions to be confirmed as fast as
possible, there are two important factors that need to be
accounted for – the proof of work should be completed
in a decent time frame, according to a desired difficulty
for an epoch and the messages should have a high
delivery success rate. The second condition is harder to
accomplish, but in general, we can safely assume that
a negligible amount of messages will be lost due to
network connectivity issues. Regarding the the proof of
work, in order to maintain an adequate time frame we
employ a difficulty mechanism and an incentivization
scheme that was described earlier.

Thus, if non-competitive pillars that are overrun dur-
ing an epoch by a supermajority of pillars will not
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receive rewards for their work. This competition will
ensure that the epochs will have similar periods and that
transactions are approved as fast as possible and included
in the ledger. Also, after receiving ζ messages from the
network, an honest pillar must abandon its proof of work
and automatically enter into the next epoch. If there is
not clear which are the winner nodes, each pillar will
compute the faster winner, then the runner-up and so
on. Even if a pillar tries to cheat by saying it belongs to
the list and sends its proof of work later, the other honest
pillars will know that the faulty pillar tried to mislead,
as they will see in the ledger that the other ones have
received its PoW later.

Just for theoretical reasons, if there is an attacker who
can control the internet traffic and messages between
pillars, we have introduced a shared coin epoch: if there
are more than four consecutive epochs that don’t end up
with a conclusion (i.e. either it is a tie or the majority
criteria isn’t met), all honest pillars will vote randomly.
This way, the attacker will have only half chances to
guess what is the decision of honest pillars, and after a
number of epochs the probability of reaching consensus
will be 1. However, this technique is implemented only
for theoretical completeness, in a real-world system the
probability for a coin round is insignificant.

The expected time to finish is O(1), given this round,
and the probability of finishing is

P = 1−
∞∏
r=1

1

2
= 1

Regarding the minimum number of epochs ν needed
for a transaction in order to be included in the ledger,
we have the following equation:

3 <= ν <∞

.

E. Adjusting the difficulty of PoW

As we have previously stated, the idea behind the
proof of work mechanism has multiple advantages –
prevents ledger cloning, acts as an additional anti-sybil
layer and provides a fair incentivization scheme for the
consensus nodes. The PoW will be adjusted in order to
keep an epoch at a constant time, for example 1 minute.
The algorithm will check at every epoch the time needed
for every pillar to solve the proof of work, will remove
the outliers and then will compute a median time. We
plan to release a self-balancing difficulty algorithm that
will use both ASIC-friendly and ASIC-resistant hashing
algorithms; if the difficulty is below a threshold an

ASIC-friendly hashing algorithm will be activated, and
also if the difficulty is above a threshold, an ASIC-
resistant will come into effect.

The time of one epoch is responsible for the minimum
time after a transaction is confirmed – a transaction is
confirmed after three or four epochs, in the best case, so
for a one minute epoch it will least at least three minutes
in order for the transaction to be confirmed.

If we note with ∆ti the difference between the times-
tamps for two consecutive finishing PoW transactions,
the mean time will be

Avg =

∑n
i=1 δti
n

, ∆ti /∈ outliers

F. Replacing regular quorums with proof of stake

The consensus timeline is divided into virtual epochs.
In a centralized, non-malicious environment classical
distributed consensus algorithms use a quorum for the
voting process: every node has an equally 1

N , N being
the total number of nodes. In our case, a decentralized,
byzantine environment this approach is vulnerable to
sybil attacks where a malicious entity can gain an unfair
advantage and manipulate the voting process. That’s why
nodes can lock a certain amount of stake in order to
obtain different roles in the network, e.g. to become
sentinel and pillar nodes. At the start of each epoch, all
nodes determine the stake weight of all the nodes in the
network. In the case of pillar nodes, network participants
can directly delegate stake.

The virtual voting process is determined on the basis
of the total stake during a virtual epoch. Pillar nodes with
stake make the decisions within the consensus algorithm
to finalize transactions. Nodes can freely unlock the
stake at any moment; however, consensus nodes have to
wait for a period of time known as ”unstaking period”.
Upon deciding transactions during the next epoch, nodes
process all transactions relating to locking, delegating
and unlocking stake, and update the staking stats of the
nodes for the next epoch.

These mechanisms aim to keep a healthy system, by
involving all network participants to collaborate towards
a common good.

VIII. CONCLUSIONS AND FUTURE WORK

This work presents a new decentralized system
architecture, namely a new decentralized ledger that
employs a virtual voting-based consensus. We first
presented the most important works regarding ledger
types, consensus algorithms, and smart contracts. We
continued by making some definitions and assumptions,
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stating some properties and theorems, then we described
the core of the architecture - the dual ledger system
and the consensus algorithm. We analyzed frequent
attack scenarios, the complexity and how to choose
different protocol parameters for optimal performance.
The Network of Momentum has a continuous cycle
of research and is still under active research; as a
result, some parts will require further clarification or
revision. We also plan to release a technical yellow
paper dedicated to a detailed presentation of the zApps
component and other improvements.
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APPENDIX

A. Proof of theorems

Proof of Theorem 1
Proof. If a node emits a transaction and it is received
by its representatives, the representatives will send the
information about the transaction to the pillars that will
further broadcast it, and every honest pillar node will
know about the transaction. For maximizing the chance
of receiving the transaction, a node will have not just
one representative, but a logarithmic size of the total
number of sentinel nodes. After three epochs, if the
transaction is not seen throughout the network upon a
request, it means with high probability that the initial
transaction wasn’t received. However, in the absence of
a DoS, the transaction will eventually be seen by the
entire network.

Proof of Theorem 2
Proof. Suppose that we have a double spend and we
also assume that the rest of the pillars are malicious i.e.
K - ζ. After they all broadcast them and all have them
both, one will be chosen based on the rules and the
other discarded. If the majority vote for transaction A
and the minority instead keep B, a fork will be created,
but no double spend.

Proof of Theorem 3
Proof. When pillars are in epoch εk, all of them have
received all transactions from epoch εk−3. The pillars
from the majority will choose one transaction based on
the rules and the minority will choose the other, not
reaching the total number of votes required and it will
not be integrated. If they still decide to accept it, a fork
will be created.

Proof of Theorem 4
Proof. After the first pillar finishes the proof of work
and sends it along with the transaction, the rest of the
honest nodes will follow and the vote count for this
transaction will reach majority, so it will be integrated
into the ledger, even if the minority of malicious pillars
will decide not to relay it.

Proof of Theorem 5
Proof. The complexity of the messages is M * log(K)
per round so when a new pillar joins the network, it will
become M * log(K + 1). An increase of the number of
pillars is almost unnoticed in the complexity.

Proof of Theorem 6
Proof. Transaction times processing will grow
sublogarithmically with the number of pillar nodes.
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